import os
import urllib
import dolfinx.fem
import dolfinx.io
import dolfinx.plot
import folium
import mpi4py.MPI
import numpy as np
import pyproj
import viskex
import femlium
Auxiliary function to get a folium
Map
close to Lake Garda.
def get_garda_geo_map(boundary_icons: bool = False) -> folium.Map:
"""Get a map close to Lake Garda, and possibly add some boundary markers."""
# Add map close to Lake Garda
geo_map = folium.Map(location=[45.6389113, 10.7521368], zoom_start=10.3)
# Add markers
if boundary_icons:
location_markers = {
"Sarca": [45.87395405, 10.87087005],
"Mincio": [45.43259035, 10.7007715]
}
location_colors = {
"Sarca": "red",
"Mincio": "green"
}
for key in location_markers.keys():
folium.Marker(
location=location_markers[key],
tooltip=key,
icon=folium.Icon(color=location_colors[key])
).add_to(geo_map)
# Return folium map
return geo_map
get_garda_geo_map()
Read the mesh, the subdomain markers and the boundary markers from file with dolfinx
.
msh_filename = "data/garda.msh"
if not os.path.isfile(msh_filename):
os.makedirs("data", exist_ok=True)
msh_url = (
"https://raw.githubusercontent.com/FEMlium/FEMlium/main/"
"tutorials/01_introduction/data/garda.msh")
with urllib.request.urlopen(msh_url) as response, open(msh_filename, "wb") as msh_file:
msh_file.write(response.read())
mesh, subdomains, boundaries = dolfinx.io.gmshio.read_from_msh(
"data/garda.msh", comm=mpi4py.MPI.COMM_WORLD, rank=0, gdim=2)
Info : Reading 'data/garda.msh'... Info : 2390 entities Info : 3937 nodes Info : 7872 elements Info : Done reading 'data/garda.msh'
Plot the mesh using viskex
.
viskex.dolfinx.plot_mesh(mesh)
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
Plot the subdomain markers using viskex
.
viskex.dolfinx.plot_mesh_tags(mesh, subdomains, "subdomains")
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
Define a pyproj
Transformer
to map between different reference systems, because the points read from file are stored a $(x, y)$ pairs in the EPSG32632 reference system, while the map produced by folium
is based on (latitude, longitude) pairs in the EPSG4326 reference system.
transformer = pyproj.Transformer.from_crs("epsg:32632", "epsg:4326", always_xy=True)
We define a mesh plotter for meshes in dolfinx
format, which is implemented in femlium.DolfinxPlotter
.
dolfinx_plotter = femlium.DolfinxPlotter(transformer)
We use the dolfinx_plotter
to draw the mesh on top of the geographic map.
geo_map = get_garda_geo_map()
dolfinx_plotter.add_mesh_to(geo_map, mesh)
geo_map
We may change the color and the weight of the line.
geo_map = get_garda_geo_map()
dolfinx_plotter.add_mesh_to(geo_map, mesh, face_colors="red", face_weights=2)
geo_map
Furthermore, we may set the colors and the weights of the face representation to depend on the markers associated to each segment.
geo_map = get_garda_geo_map(boundary_icons=True)
face_colors = {
0: "gray",
1: "blue",
2: "red",
3: "green"
}
face_weights = {
0: 1,
1: 2,
2: 5,
3: 5
}
dolfinx_plotter.add_mesh_to(
geo_map, mesh, face_mesh_tags=boundaries, face_colors=face_colors, face_weights=face_weights)
geo_map
Cells can be colored as well, with a uniform color or depending on the cell markers. We start from a uniform color.
geo_map = get_garda_geo_map()
dolfinx_plotter.add_mesh_to(geo_map, mesh, cell_colors="orange")
geo_map
We also show the case of colors being set from cell markers. There are two cell markers in this mesh, equal to 1 for the region close to the shoreline (colored in purple) and 2 for the rest of the domain (colored in yellow).
geo_map = get_garda_geo_map()
cell_colors = {
1: "purple",
2: "yellow"
}
dolfinx_plotter.add_mesh_to(geo_map, mesh, cell_mesh_tags=subdomains, cell_colors=cell_colors)
geo_map
Once can use colors associated to both cell and face markers on the same plot.
geo_map = get_garda_geo_map(boundary_icons=True)
dolfinx_plotter.add_mesh_to(
geo_map, mesh,
cell_mesh_tags=subdomains, face_mesh_tags=boundaries,
cell_colors=cell_colors, face_colors=face_colors, face_weights=face_weights)
geo_map
In order to define a simple scalar field, we compute the centroid of the domain.
centroid = np.mean(mesh.geometry.x[:, :2], axis=0)
We may plot the centroid on top of the mesh.
geo_map = get_garda_geo_map()
dolfinx_plotter.add_mesh_to(geo_map, mesh)
folium.Marker(location=transformer.transform(*centroid)[::-1], tooltip="Centroid").add_to(geo_map)
geo_map
The scalar field is defined as $s(\rho, \theta) = \frac{\rho}{\sqrt{1 - 0.5 \cos^2 \theta}}$, and is interpolated on a $\mathbb{P}^2$ finite element space. Here $(\rho, \theta)$ are the polar coordinates centered at the centroid.
scalar_function_space = dolfinx.fem.functionspace(mesh, ("CG", 2))
def scalar_field_eval(x: np.typing.NDArray[np.float64]) -> np.typing.NDArray[np.float64]:
"""Evaluate the scalar field."""
rho = np.sqrt((x[0] - centroid[0])**2 + (x[1] - centroid[1])**2)
theta = np.arctan2(x[1] - centroid[1], x[0] - centroid[0])
return rho / np.sqrt(1 - 0.5 * np.cos(theta)**2)
scalar_field = dolfinx.fem.Function(scalar_function_space)
scalar_field.interpolate(scalar_field_eval)
We next show a filled contour plot using viskex
.
viskex.dolfinx.plot_scalar_field(scalar_field, "scalar")
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
In order to plot a field on a geographic map, we use again the dolfinx_plotter
. We may plot a filled contour plot on the geographic map.
geo_map = get_garda_geo_map()
dolfinx_plotter.add_scalar_field_to(geo_map, scalar_field, mode="contourf", levels=15, cmap="jet")
geo_map
Similarly, we can also use (unfilled) contour plots.
geo_map = get_garda_geo_map()
dolfinx_plotter.add_scalar_field_to(geo_map, scalar_field, mode="contour", levels=15, cmap="jet")
geo_map
One may also combine mesh plots and solution plots.
geo_map = get_garda_geo_map()
dolfinx_plotter.add_mesh_to(geo_map, mesh, face_colors="grey")
dolfinx_plotter.add_scalar_field_to(geo_map, scalar_field, mode="contour", levels=15, cmap="jet")
geo_map
We next define a vector field $\mathbf{v}(\rho, \theta) = \begin{bmatrix}-\rho \sin \theta\\\rho \cos\theta \end{bmatrix}$.
vector_function_space = dolfinx.fem.functionspace(mesh, ("CG", 2, (mesh.geometry.dim, )))
def vector_field_eval(x: np.typing.NDArray[np.float64]) -> np.typing.NDArray[np.float64]:
"""Evaluate the vector field."""
rho = np.sqrt((x[0] - centroid[0])**2 + (x[1] - centroid[1])**2)
theta = np.arctan2(x[1] - centroid[1], x[0] - centroid[0])
values = np.zeros((2, x.shape[1]))
values[0] = - rho * np.sin(theta)
values[1] = rho * np.cos(theta)
return values
vector_field = dolfinx.fem.Function(vector_function_space)
vector_field.interpolate(vector_field_eval)
We first see a plot obtained with viskex
, which shows either the magnitude of the vector field or its representation using glyphs.
viskex.dolfinx.plot_vector_field(vector_field, "vector")
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
We may obtain contourf or contour plots of the magnitude of the vector field.
geo_map = get_garda_geo_map()
dolfinx_plotter.add_vector_field_to(geo_map, vector_field, mode="contourf", levels=15, cmap="jet")
geo_map
geo_map = get_garda_geo_map()
dolfinx_plotter.add_vector_field_to(geo_map, vector_field, mode="contour", levels=15, cmap="jet")
geo_map
Also a quiver plot can rendered on top of the geographic map.
geo_map = get_garda_geo_map()
dolfinx_plotter.add_vector_field_to(geo_map, vector_field, mode="quiver", scale=1e-1, cmap="jet")
geo_map